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The energy and action of small waves riding on 
large waves 
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We derive the dynamics of small waves riding on larger waves using a canonical, 
Hamiltonian formulation. The small waves are treated linearly and their energy is 
derived to all orders in the scale separation between the waves. Our results are 
similar to those of Longuet-Higgins (1987), but we have extended his calculations to 
include gravity-capillary waves and to allow for a more general, two-dimensional, 
large-wave field. Our result for the small-wave Hamiltonian is expressed in both 
Eulerian (horizontal) coordinate system and a non-inertial system determined by the 
large wave’s surface. On further assuming scale separation between the small and 
large waves the averaged Lagrangian equations and the action density are derived. 
Action conservation is explicitly demonstrated. 

DYSTHEY, ROY L. SCHULTS, A N D  JON A. W R I G H T  

1. Introduction 
Smaller waves on the sea surface are strongly influenced by the larger waves. The 

spectrum of short waves is expected to vary considerably with the phase of these 
larger waves. Also the short waves react relatively quickly (compared with the long 
waves) to the wind, and the wind itself is expected to be affected by the waves. 
Nonlinear phenomena, such as growth of the wave spectrum and breaking of smaller 
waves, are certainly influenced by the combined effect of short-wave modulation by 
the long waves and wind-wave interaction. Among the processes involved in the 
modulation is the nonlinear interaction between waves of different sizes. It is with 
this nonlinear interaction that we are concerned in this paper. Other possibly 
important aspects, such as the generation and decay of short waves, are not studied, 
so that our considerations are only one aspect of the general problem. 

We treat both gravity and capillary waves, as both are believed to be important 
in the process of wind forcing and wave breaking. We restrict ourselves to a linear 
treatment of the smaller waves and only comment, where appropriate, on the 
modifications necessary for a nonlinear treatment. The larger waves are assumed to 
be fully nonlinear but non-breaking and their complete interaction with the small 
waves is included. We assume that the large-wave properties in the absence of 
small waves are given by solutions of the equations of motion. Since the back 
reaction of the small waves on the large waves is second order in the small-wave 
amplitude, inclusion of this back reaction in the functions used to describe the large 
waves will not affect the linear treatment of the small waves, but could be useful in 
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a nonlinear extension. On the other hand, calculations of the back reaction can be 
treated with our Hamiltonian, using methods of Whitham (1974a) as described 
briefly in $6. 

Throughout the paper the term large waves is meant to refer to waves of large 
amplitude, while the term small waves refers to a perturbation on those large waves. 
In  most of the paper, no wavelength scale separation is required. When there is a 
scale separation, large-amplitude long waves are only long in comparison to the 
small-amplitude short waves. The large waves may, in fact, be capillary waves 
themselves. 

We restrict ourselves to purely irrotational flows, though the extension to wave- 
current interactions involves similar issues and will be discussed in a future paper. 

I n  the absence of dissipation and forcing, the short waves can be described by wave 
advection and straining in addition to their intrinsic dynamics, and by conservation 
of wave action. This problem has been discussed by Garrett & Smith (1976), Phillips 
(1981) and Longuet-Higgins (1987). Longuet-Higgins dealt with the special case of 
small waves on a single Stokes wave. One purpose of this paper is to extend the 
formulation to cover not just a single Stokes wave, but a complete two-dimensional 
wave field. When we do so, we find exactly the form proposed by Longuet-Higgins 
for the case of gravity waves on a single Stokes wave. 

Garrett & Smith and Longuet-Higgins relied on a change of reference frame from 
the fixed frame to one accelerating with the fluid surface. In  this reference frame the 
effective gravity is g’ = g - a ,  where g is gravity (directed downward), and a is the 
acceleration of the water a t  the surface. g’ is directed normal to the surface, so that 
the effective horizontal in the new reference frame lies along the surface. The surface 
and the acceleration refer to the long wave, as the short wave is only treated linearly. 
This change of reference frame suffices a t  the lowest order of the separation of scales 
between the small wave and the large wave. Although the surface frame is more 
elegant, in a later section we provide formulas useful for calculations in terms of the 
horizontal Cartesian coordinates. Since action conservation works better than any 
order of the scale separation (see, e.g. Landau & Lifshitz 1976), one may want to go 
beyond lowest order in the expression for the action: there is the worry that there 
may be additional higher-order terms. These additional terms could involve either 
the surface curvatures or the rate of tilt of the surface, since neither of these effects 
occur in a constantly accelerated Cartesian coordinate system. We find an expression 
for the gravity-wave energy that has no such’extra terms. I n  the capillary-gravity 
case, there is an extra contribution to effective gravity of - c T ( K : + K ~ ) ,  where CT 

is surface tension and K~ and K~ are the principal curvatures of the long-wave 
surface. 

In  the next section we review wave action and the Lagrangian and Hamiltonian 
descriptions of surface waves. The third section contains the details of the description 
of the Hamiltonian for small disturbances of a surface-wave field where the position 
labels are the x, y coordinates on the horizontal plane. The fourth section describes 
the Hamiltonian for these small waves in a coordinate system moving with the 
surface of the large waves. We also derive the same equations directly from the 
Lagrangian. Sections 3 and 4 do not need an assumption about scale separation. The 
results in § 3 are probably of more practical use, while those of $4 are more elegant 
and may provide a better understanding. In  $ 5  we assume there exists a scale 
separation ; the eikonal (averaged Lagrangian) equation and the appropriate action 
density are obtained, and action conservation is demonstrated. Section 6 comments 
briefly on the back reaction of the small waves on the large waves. 
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2. Action and energy 
The principle of action conservation has been known for 120 years (Boltzmann 

1866; Clausius 1871). It was expressed in a modern form by Ehrenfest in a number 
of papers beginning about 75 years ago, Ehrenfest (1959). This principle applies to 
a n y  conservative dynamical system undergoing oscillatory motion. By conservative 
system is meant one that can be described by a Lagrangian (variational principle), 
or equivalently, by a Hamiltonian. Only if the Hamiltonian (or equivalent 
Lagrangian) is time independent is energy conserved. The following results are well 
established (see e.g. Landau & Lifshitz 1976, and Ehrenfest 1959) : 

(i) For any periodic conservative system the action is defined to be an area in 
( p ,  q) phase space enclosed by the trajectory, i.e. $p dq, where q is the coordinate, p 
its conjugate momentum, and the integral is over an entire period. This action is 
adiabatically invariant, which means that if the parameters describing the oscillator 
are varied sufficiently slowly the adiabatic invariant changes by an arbitrarily small 
amount, i.e. this change goes to zero faster than any power of the rate of the 
parameter variations. There are two caveats in this result: ( a )  the parameter 
variation must be smooth and (b) there is a removable (to all orders) oscillatory piece 
in the adiabatic invariant that is first order in the parameter change. 

(ii) If the Hamiltonian has a kinetic energy T, quadratic in p (but arbitrary in q),  
and a potential energy Ti, independent of p ,  an equivalent expression for the action 
is 2 ( T ) / w ,  where a time average over a period is taken, and a factor 2n has been left 
out relative to $pdq. (Usage in the literature is not consistent on the 27c factor.) 

(iii) If a system is linear, there exists a Hamiltonian homogeneous and quadratic 
in p and q.  If the energy E is defined to be the value of this quadratic Hamiltonian, 
the action can be written as E / w .  (If both (2) and (3) are true, then ( V )  = ( T ) . )  

(iv) The action is invariant under any canonical transformation. In  particular, it 
is the same in any coordinate system (inertial or non-inertial). 

(v) Conservation of action is related to invariance in change of the phase of an 
oscillation (the relation between an invariance and a conservation law is known as 
Noether's Theorem). 

Whitham introduced these ideas into the study of waves in fluid systems from a 
somewhat different point of view (see Whitham 1974a for a complete presentation). 
He discovered the equation 6L = A6w connecting the action A ,  variation in the 
Lagrangian averaged over a period, and variation in the frequency, w .  He wrote this 
as A = d L / d w  which is equal to $pdq (Whitham 1974b), being undefined when 
6w = 0. Most of the general properties of action are discussed by Whitham 
(1974a, b).  

Bretherton & Garrett (1968) consider the special case of those linear waves for 
which a Lagrangian frame exists, and evaluated E / w  in that frame. (We use the term 
Lagrangian frame to mean a locally comoving coordinate system which can be 
considered Cartesian and inertial on the space and time scales of the small waves.) 
Unfortunately, this paper has led to some misunderstandings owing to the authors 
requiring that a Lagrangian frame exist and that calculations be done in that frame. 
The following statements are meant to clear up those misunderstandings. 

Well-defined prescriptions exist for calculating the energy E and frequency w in 
any frame. Specifically a variational principle can be found by the method of Seliger 
& Whitham (1968), and E and w calculated following Whitham (1974a, b) .  The action 
can be evaluated as E / w  in any frame. Whitham (1974b) has shown quite generally 
that although the energy and frequency are frame dependent, their ratio is not. It is 
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not necessary to work in a Lagrangian frame, in fact a Lagrangian frame may not 
exist. Even when one does exist, i t  may be more convenient to use some other frame. 
For example, in the case of a single long Stokes wave it is convenient to calculate in 
a frame moving with the phase velocity of the long wave. In  that frame all quantities 
associated with the long wave are time independent, making each of the energy and 
frequency of the small waves constant. 

It is instructive to follow in detail the simple example of surface waves described 
in two intertial reference frames. The potential energy is the same in both frames, so 
the total energy changes by as much as the kinetic energy does. The kinetic energy 
per unit area is 

where 5 is the surface elevation. We write v as an advecting part V,  assumed slowly 
varying in space, and a wave part 0,. We subtract the energy in the absence of the 
wave, to obtain 

J -a: J -m 
5 

E + p P C +  V - L , :  pvwdz++p l-m v:dz. (2.2) 

Averaging over a wavelength 

( K E )  = V * P + $ p  

where the (Stokes drift) momentum IS 

P = ( [pvwdz). 

(2.3) 

(2.4) 

The change between one reference frame and another moving at velocity - U  
relative to the first is 

6 V =  u. (2 .5)  

Therefore SE = SKE = Us P, (2.6) 

or E' = E +  U . P .  (2.7) 

This transformation, derived for surface water waves, is much more general (see, e.g. 
Sudarshan & Makunda 1974, Chapter 19, table 1). The invariance of the action and 
this transformation of the energy can be related as follows: We start with 

E = A o ,  P = A k ,  (2.8) 

connecting the energy and momentum with the action, frequency, and wavenumber. 
For the last equation see e.g. Phillips (1977, eq. (3.2.13)). The new frequency in the 
moving frame differs from the old frequency by a Doppler shift 

W' = O +  U - k ,  (2.9) 

so that new energy is E' = A d ,  (2.10) 

since A is unchanged. Multiplying (2.9) by A ,  we obtain (2.7), the transformation law 
for the energy. Since the action is independent of reference frame, we are at liberty 
to choose any frame that we find convenient to work in, as long as we evaluate both 
the energy and the frequency in that frame. 
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We return to our own discussion of Bretherton & Garrett’s paper. If a Lagrangian 
frame exists, it is certainly permissible to evaluate the action in that frame, and then 
to transform to another frame, such as an Eulerian frame. In  general, however, the 
existence of a Lagrangian frame is not guaranteed, and Bretherton & Garrett’s 
method is inapplicable. There is, however, the general result for linear systems : the 
energy E is the homogeneous quadratic Hamiltonian, evaluated in any reference 
frame, and the action is E l o ,  where the frequency w is evaluated in the same 
reference frame. To lowest order in the scale separation, a Lagrangian frame exists 
for short waves interacting with long waves. In higher orders, there is not a unique 
Lagrangian frame, since the current caused by the big wave is depth dependent. In 
a closely related problem, waves interacting with a current layer, a Lagrangian frame 
does not even exist in the lowest order. The problem is that there is no locally 
comoving coordinate system, so one cannot apply the Bretherton-Garrett pre- 
scription. The correct action flow velocity has a k.aU(k)ak term in addition to the 
terms obtained if a Lagrangian frame really existed, where U ( k )  is an effective, k 
dependent, velocity. In other words, the current induced shift in the frequency is not 
a Doppler shift linear in k .  

The main calculation that we must perform is to find the energy, i.e. the 
Hamiltonian, of a small-amplitude wave riding on the larger wave. The small- 
amplitude assumption is implemented by discarding terms in this Hamiltonian that 
are cubic or higher in the canonical variables, leaving only the quadratic terms ; as 
discussed above, there are no zero- or first-order terms. The quadratic Hamiltonian 
is obtained by performing a canonical transformation on the fully nonlinear 
Hamiltonian for the combination of the big and small waves, followed by a Taylor- 
series expansion (basic manipulations on Hamiltonians, including canonical 
transformations, are discussed e.g. in Goldstein 1950). Consider one such canonical 
transformation. This transformation describes a change of variables which separates 
each variable of the full problem into the sum of two parts. The first part represents 
the large waves and is a solution of the equation of motion. The second is the new 
canonical variable and represents the small waves. No wavelength scale separation 
is implied a t  this stage. The remaining ambiguity in the specification of the 
transformation is resolved by requiring that the new Hamiltonian has no zero-order 
terms. Since the large wave is a solution of the equations of motion, there will be no 
first-order terms in the new Hamiltonian. Linear terms in the expansion of the 
original Hamiltonian are cancelled by terms in the change of the Hamiltonian due to 
the time derivative of the generating function of the canonical transformation. The 
time derivative of the generating function is linear, so the quadratic part of the new 
Hamiltonian is identical with the quadratic part of the expansion of the original 
energy. Thus in this case the desired Hamiltonian is simply the quadratic term of the 
expansion of the original energy in the small-wave variables. In  later sections, we 
shall combine this transformation with further transformations, whose time 
dependence does change the value of the quadratic Hamiltonian. They do not, 
however, change the action. The purpose of these further transformations is to 
simplify the algebra and the interpretation. 

Our starting point is the Hamiltonian for fully nonlinear surface waves. This 
Hamiltonian, or the related variational principle, has been independently re- 
discovered by a number of workers: for a review, see Miles (1981). Normally, a 
Legendre transformation carries one from a variational principle to a Hamiltonian. 
In the case of fluid problems, however, the constructed variational principle is in 
canonical form, and it is trivial to read off the Hamiltonian. A Lagrangian in 
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canonical form (Courant & Hilbert 1937) depends not only on q, but also on p in the 
following way : 

(2.11) L(pj,  qj ;  P j ,  q j )  = X pjO,aj-H@j, qj) .  , 
Thus, from a canonical-form Lagrangian it is trivial to read off the p , q  pairs of 
canonical variables and the Hamiltonian H ( p ,  4 ) .  

In order to express the surface-wave Hamiltonian in a convenient form, as well as 
for algebraic convenience, we introduce some notation. We wish to describe waves in 
terms of variables defined on the water’s surface. The element of surface area is 

dS = ydxdy, (2.12) 

with y = (i+a,{-a,[)a, (2.13) 

where 6 is again the surface elevation. We write x for (x, y) and 3, for (az, a#).  Three- 
dimensional partial derivatives of, for example, the velocity potential occur in the 
Hamiltonian, and these need to be expressed in terms of the velocity potential (or 
other functions) a t  the surface. Let f (x, t) be any function a t  the surface. An interior 
function g(x,  z ,  t )  is defined by solving Laplace’s equation 

(2.14) 

and ri. wg = 0 (2.15) 

on the bottom and sides (if any). Thus if.f is the velocity potential a t  the surface, g 
is the velocity potential in the interior. The operators D, = (D,,D,) and D, are 
defined by 

DJ = a, giz=5. (2.16) 

Thus, Dj is a linear (but non-local) operator from functions of (2, y) to functions of 
(x, y). We shall also use the similarly defined normal derivative D,. When we work 
on the unperturbed large-wave surface instead of the complete surface, we shall use 
the notation DsO, D,,, D,, and yo. D, differs from a,, since 

a, .m 4 = a,grx, a x ,  4 t-l 
= D, f + ( % 5 )  D, f .  

Relations obeyed by the D are 
(2.17) 

and 

(2.19) 

(2.20) 

The Hamiltonian for surface waves is equal in value to the energy. The canonical 
coordinates are the surface elevation c(x ,  y, t) and the velocity potential &x, z ,  t )  
evaluated at  the surface 

(2.21) 

The summation in (2.11) is taken to be an integral over x = (x,y). In  terms of these 
variables, the Hamiltonian (West 1981) is 

A ( X ,  t)  = 4[x, a x ,  t) ,  tl- 

H(Y> 4,) = ~ ~ , ( D z - a , 5 . D , ) 4 , + ~ ~ + + Y .  (2.22) 

We have chosen units in which the density p = 1.  The surface tension is u. The 
operators D are functionals of 5, thereby introducing nonlinearities into H .  The 
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complexity of surface-wave calculations is entirely in dealing with the D operators. 
By the relations (2.18) and (2.19) only one D operator, for example D,L, is 
independent, with the others easily obtained by solving (2.18) and (2.19). One 
method of working with D, is to expand it in a power series in 6. For problems 
involving small waves on big waves, the series cannot be truncated after a few terms, 
since thc ratio of successive terms is of order the product of large-wave amplitude and 
the nmall-wave wavenumber; this product is often large. 

We write <,#s as 

(2.23) 

where the subcript 0 refers to the large wave and 1 to the small wave. We could 
expand the Hamiltonian in a Taylor series in the 1 variables, retaining the quadratic 
terms, obtaining the Hamiltonian density H, .  In the next section, we actually obtain 
an H ,  including a further transformation. In  $4, we transform to a coordinate system 
defined with reference to the unperturbed surface, z = Q. In this system, the meaning 
of the canonically conjugate variables is different, as the summation of (2.11) is now 
an integral over the surface area. I n  this coordinate system the Hamiltonian has the 
most direct physical interpretation, as given by Longuet-Higgins. In  either 
coordinate system, the new height function must be single valued, which precludes 
rigorously discussing breaking waves in the x, y coordinates or waves on very curved 
surfaces in the surface coordinate system. We also carry out the calculation in a very 
different way, starting with the variational principle and choosing the final variables 
immediately, thus simplifying the evaluation of the Taylor series. 

4 s  < =  = # S O + # S l ,  6+51> I 

3. Small-wave dynamics : horizontal coordinates 

are carried out. The starting point of our calculation is the Lagrangian 
In this section, the details of the calculation of the Hamiltonian as outlined in $2  

where the Hamiltonian density H is given by (2.22). We assume that we have 
obtained an exact solution with canonical variables lo and #so which represents the 
nonlinear large wave. (As will be shown in $6 this condition can be relaxed to allow 
small corrections to the equations for 6, #so quadratic in the small-wave amplitude.) 
We consider perturbations of this solution by writing 

and 
(3.2) 

as in (2.23). 
The first step is to find an expression for D,q5s as a perturbation expansion. We 

shall do this by a Taylor series about the unperturbed surface. Let $(x, y ,  t )  be the 
value of the full velocity potential on the unperturbed surface z = c0(x, y, t )  and use 
the operators Djo, which are the operators D, referred to this same unperturbed 
surface, Then we can write to second order 

and (3.4) 
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(To be mathematically precise, we must let (3.3) define 11., since there may be 
singularities of $ between true arid unperturbed surfaces when 5 < co.) inverting (3.3) 
we get 

11. = 11 + 51 DZO + 4G D201-' 4 s  
= $so + (A1 - 51 Dzo $so) - iG D20 $so - 51 I)zo($s1- 51 Dzo $so). 

$Sl = $Sl - 6 1  Dzo $so, 

(3.5) 

I n  this expression, notice that rbSl always occurs in the combination 

(3.6) 

which is the part of the total change in $s that arises from changes in the underlying 
velocity potential and not the part that  is the result of evaluating t,he unperturbed 
velocity potential a t  the perturbed surface. It will be useful to recognize this 
combination when it arises, as in (3.5), where it allows us the slightly more compact 
form 

Now using (3.2) and (3.4) we obtain the expression 

11. = $so + (1 - 51 Dzo) 11.s1- 651 D,20 $so. 

$s Dj $s = ($so + $ S l )  Djo 11. + 51($SO + $s1) Djo Dzo 11. + iG $so Djo D20 $ S O >  

(3.7) 

(3.8) 

where we have used the fact that Dzo and Djo commute since the underlying partial 
derivatives commute with each other and with the Laplacian operator. 

The kinetic-energy part of the Hamiltonian (2.22) is 

T = i$sYDn$s = t$s[D,-(a ,5o~-~,-(~,c , ) .~ , l$s .  (3.9) 

Looking a t  the third term, we obtain 

-B(~,cl)*#sD,#s = -~ (a ,5 l ) . (#~o+$s l )Dzo  ~ 

-:(a, L-3 - [(Dzo $so) D,o $so + $so D,o Dzo $sol, (3.10) 

where we have chosen to write $sl in terms of ~ s l  using (3.6). At any point in our 
calculation we could return to $sl and indeed we shall do so when we get our 
quadratic Hamiltonian. Integration by parts and the use of the chain rule, 
a,AB = A a, B+ @ , A )  B, (which does not hold for the D, operators) yields for the 
third term of (3.9) 

f51"az $so + ax 11.Sl) -Dzo $ + ($so + 11.Sl )  a,.D,o 11.1 
+ ~ ~ " ~ ~ ~ = z o ~ s o ~ ~ ~ ~ o ~ s o + ~ ~ ~ o ~ s o ~ ~ ~ ~ ~ ~ o ~ s o + ~ ~ ~ ~ s o ~ ~ ~ , o ~ z o ~ , o  

+ $so a, * D,o Dzo $sol. (3.11) 

The first two terms of the kinetic energy (3.9) take a similar form: 

iA(Dz-(az5o)*Dz)$s = 6 ~ $ ~ o + 1 1 . s l ~ Y o ~ ~ o 1 1 . + ~ 6 l ~ ~ z o $ s o ~ ~ o ~ , o ~  

+ 6 6 l ~ ~ s 0 + 1 1 . s l ~ Y o ~ , o ~ , o 1 1 . + + G ~ ~ z o ~ s o ~ Y o ~ , o ~ z o 1 1 .  

+ x #so Yo Dno D,20 $so. (3.12) 

When combining (3.11) and (3.12) it is very convenient to use two identities which 
follow from (2.18)-(2.20), i.e. 

YOD, l lD~O~+~,~D,O~ = 0, (3.13) 

and (YO Dno A )  (Dzo B )  + (Dzo A )  * a z B  = (Dzo A 1 ?zoB+ (Dzo A * D,o R, (3.14) 
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for any functions A and B. The kinetic energy becomes 

T = +(#so + $Sl)  Yo Dno $ + +51[(Dzo #so) Dzo $ + ( D Z O  #so) * D,o $ + (8, $.,l) * D,o $1 
+ iG[(D,O #so) *Dzo Dzo $so + P z o  #so) Dzo Dzo #so + P Z O  #so) *a, Dzo #sol. (3.15) 

Finally we make use of the fact that yo Dno is a Hermitean operator (this follows from 
the easily verified relation 

This allows the second-order pieces of $ in the first term of (3.15) to be reworked 
through the use of identity (3.14) so that 

T = ;(#so + $ S l )  Yo Dno(#so + $ S l ,  +t61:1[(Dzo #solZ + ( D Z O  # S O Y  

+ ~ ~ ~ , o # s o ~ ~ ~ , ~ s ~ l + t G ~ ~ 5 0 $ S O ~ ~ ~ ,  Dzo $so, (3.16) 
which has the quadratic part 

T2 = ~ $ s l Y o ~ n o $ s l + 5 l ~ o s ~ ~ , $ C s l + t G ~ o s ~ ~ , ~ O S ~  (3.17) 

when written in terms of wos = D,, #so and uos = D,, #so (respectively, the vertical 
and horizontal components of the unperturbed fluid velocity evaluated a t  the 
unperturbed surface). 

The surface-tension term cry of the Hamiltonian (2.22), when expanded in powers 

(3.18) 

Combining (3.6), (3.17), (3.18) and the gravitational-potential-energy term we obtain 
the quadratic Hamiltonian : 

H -1 
2 - A#,,- 61  wos) Yo Dno(#s1- 61 wos) + 51 uos-~z($s1-51 wos) 

At this point, we have carried out the program outlined in $2. Equation (3.19) 
suffices as a small-wave Hamiltonian. However, a further canonical transformation 
simplifies the Hamiltonian. We notice that 9,. always appears in the combination that 
we named $sl in (3.6). Therefore, using $sl is better than using $sl. In  particular, the 
combination Dn0(l1 was), which has no natural physical interpretation, no longer 
occurs in H .  The desired transformation is generated by 

G = 5 1 $ S l + + G ~ O S ,  (3.20) 

= aG/ac,. Since wos in G is time dependent, the value of so that 6, = aG/a$sl and 
the Hamiltonian changes by aG/at, and thus the term 

(3.21) 

(where (az)os is the acceleration of the unperturbed fluid a t  its surface) must be added 

(3.22) 
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where gapp = 9 + (aA0, = (a  - g )  * f, (3.23) 

and the momentum density is 
p ,  = Cl a2 @,1. (3.24) 

Our final expression for the quadratic Hamiltonian is thus (3.22) supplemented by 
definitions (2.13), (2.19), (3.23) and (3.24) (the first two with c0 replacing c). The 
horizontal integral of the first term is equal to the volume integral below the 
unperturbed surface of $vt. It is the intrinsic kinetic energy of the small waves. The 
next term is a modified potential energy, with gapp as given by (3.23) replacing g. As 
will be shown in $4,  the somewhat complicated surface-tension term is actually just 
$(a, " / y o ,  where a, means the derivative along the unperturbed surface. The last 
term is the advective term, as in (2.3). It depends on uos, the horizontal fluid velocity 
a t  the surface ; the vertical fluid velocity does not directly enter. 

The equations of motion following from the Hamiltonian (3.22) are 

at Cl = Yo Dno 1,1-az - (uos Cl) (3.25) 

4. Small-wave dynamics : surface coordinates 
In  this section we derive expressions for the dynamics of the small waves in terms 

of a coordinate system s defined on the unperturbed surface a t  each instant of time, 
together with a distance variable n normal to the surface. At one instant of time, the 
choice of the coordinate system s is arbitrary, but a t  later times it is fixed by a 
requirement we impose that a point of fixed s should always move normal to the 
instantaneous surface. The advantage of this formulation is the ease of interpretation. 
There are two equivalent ways to do this. In  $4.1, the expression for the second-order 
Hamiltonian H, obtained in $ 3  is modified to accommodate the new variables. In  
$4.2 an alternative procedure makes the change of variables directly in the original 
three-dimensional Lagrangian. We conclude this section with the equations of 
motion for the small waves in terms of surface coordinates. 

4.1. Transformation from horizontal coordinates 

In  the expression given in $3  for the second-order Hamiltonian H , ,  the functions 
21rSl and are thought of as depending on horizontal positions and time. We now 
consider them as depending on time and on a set of coordinates s, which describes the 
position on the unperturbed surface. The area element of the unperturbed surfaces, 

dS  = yo dx dy, (4.1) 

is assumed expressed in terms of s. In  $3,  the surface functions were considered 
independent of the vertical 2,  and for such functions V = a,. We now consider them 
independent of the normal, in which case V = a,. For functions on the surface, these 
are related by 

where the normal unit vector is 

ri = Y;yP-azco). (4.3) 
The operator a, is a gradient on three-dimensional physical space, and should not be 
confused with (a,,, a,,), the gradient in two-dimensional s-space. We also define the 
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61 = Yo h(s, t )  
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perturbed surface in terms of normal distances h(s,  t )  from the unperturbed surface, 
in which case 

to lowest order. The change is necessary because h and q5sl are the canonical variables 
in these coordinates. 

The gradient of the pressure, g-u, has a dynamically determined normal part and 
a tangential part determined by surface tension. Thus, we have 

(4.4) 

(U - g )  = f i f i .  (U - g )  - rT as(K1  + K z ) ,  (4.5) 

where K ~ ,  K~ are the principal surface curvatures. The second-order part of the surface 
tension energy in (3.22) becomes much simpler in these variables since 

and ( a S 5 J 2  = ( Y o ~ , ~ ) 2 + ~ 2 ( Y ~ ~ , Y o ’ ) 2 - ( Y ~ ~ , Y o ’ ) ’  (ash2). (4.7) 

7; ( 6 )z  d s  = {(a, h)2 + h2yo a; Y;l} dS. (4.8) 2 a s l  

Yoa:Y,l = --~--i-Yo(az50)*as(-1+-Zf. (4.9) 

An integration by parts on the s variables combines the terms of (4.7) into 

s 
This is expressed in geometric terms by means of 

The last terms in (4.9) are seen to cancel the contribution from the last term of (4.5) 
by using (4.3) to express axC0 in terms of ri and 2. 

Finally we note that the time-dependent change from integration variables x to 
surface variables s affects what we mean by the partial time derivative of any 
function B,  

which shifts part of the term into the Hamiltonian 

Putting (4.1)-(4.11) into (3.22) we get 

L = dS{-h&,,-H’’(h, ~ , l , t ) > ,  s 
with the quadratic part of H” having the form 

(4.10) 

(4.11) 

(4.12) 

H i  = W s 1  ’ n o  $,I+ g e f f  h2 + g ( a s  h)21 + u. P,,  (4.13) 

where g e f f  = (a -g ) . f i - (V )  ( K ; + K i ) ,  P, = has11.,1. (4.14) 

Here U is the unperturbed velocity of the fluid along the unperturbed surface (not the 
same as uos which is horizontal) and P, is the wave momentum in the surface 
coordinate system. Comparison of (4.13) with the original Hamiltonian, (2.22), shows 
that the only changes are an advection along the instantaneous unperturbed surface 
and an effective gravity which depends on both the unperturbed acceleration normal 
to  the surface and the principal curvatures of the surface. All other curvature effects 
are contained in the variables s. 

The equations of motion derived from (4.13) are presented in $4.3. 
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4.2. An alternative approach 

We now derive the above result by an alternative technique, starting from the 
Lagrangian in the form given by Luke (1967), with surface tension added : 

- L  = / J r [ % + t ( o q 5 ) ' + g z  dxdz+aS,  1 (4.15) 

where S is the excess surface area (over the horizontal projection). We want to refer 
the variables of the perturbed motion, to the unperturbed surface C, which we 
assume is represented by some time-dependent parametrization, with parameters 
s = (s,, s,). These parameters together with a coordinate n, measuring the position of 
a point along a normal fi  to  C (n = 0 on C), serve as a coordinate system. It can only 
be a proper coordinate system in a neighbourhood of Z. (At a distance given by the 
smaller of the radii of curvatures of C, caustics start developing. We only need the 
coordinate system a distance of the order of the perturbation amplitude away from 
C, so this is a negligible restriction.) 

q5 = $o+q51, (4.16) 

where $o represents the unperturbed flow, and $1 is the perturbation. The perturbed 
surface is described relative to C by 

n = h(s, t ) ,  (4.17) 

where Ihl measures its distance from C along a normal ii to the latter. Expanding 
L = Lo + L, + L, + . . . in q5, and h ,  Lo describes the unperturbed flow and L, can be 
shown to vanish as a consequence of the stationarity of Lo. L, gives the linearized 
equations by requiring that L, be stationary with respect to variations of h and 
4,. It is readily seen that L2 is to be extracted from the following part of L :  

We write 

where V, is the domain enclosed between the perturbed surface and C, and Vo is the 
domain below C, dV is the volume element, and p o  is the unperturbed pressure given 

a40 -p ,  = dt + &(V$,)2 + gz. 

The second-order contribution from the first term in the first integral is 

(4.19) 

(4.20) 

where dS is an area element of C, and dp,,/dnl, is the component of the unperturbed 
pressure gradient normal to C. Finally K ,  + K ,  is twice the mean curvature of C. The 
second-order contribution from the second and third terms in the first integral of 

Q 

(4.21) 

We want to express the integral in terms of $sl = $l[,. Since the time derivative 
occurs, we have to fix our ideas of the time-dependent parametrization of C: 

r(s, t )  = w, t ) ,  Co:O[x(s, t ) ,  tll. (4.22) 
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We denote by V and U the components of the unperturbed surface velocity, V$,ls, 
perpendicular and parallel to C, respectively. It is convenient to restrict the possible 
representations to those satisfying - 

d r  
S ' V ,  

i.e. a point s = constant, sitting on C, is moving perpendicular to C. 
The velocity relative to a point on C of constant s is U,  so we write 

(4.23) 

(4.24) 

where +csl depends on s and t through (4.21) and a, is the gradient operator on the 
surface C (as defined by (4.2)). Here slat means the rate of change a t  a surface point 
moving perpendicular to C (s = constant). The second-order contribution to  crS 
becomes r r  

(4.25) 

where K~ = K~ K~ is the Gaussian curvature of the unperturbed surface C. 
Assembling terms we have 

where dldt = d / d t  + U-a,. Since atmospheric pressure can be arbitrarily 
the surface pressure p,, is given by - u ( K ~  + K,). Using this we obtain 

Here g e f f  is defined in (4.14) above, and we have used the fact that 

set to zero, 

(4.27) 

(4.28) 

From (4.26) the linearized equations can be obtained by variation with respect to h 
and y l .  In  particular we obtain the equation of continuity 

VZ$, = 0. (4.29) 

Taking (4.29) as a constraint, the last integral of (4.26) is readily transformed to a 
surface integral, and the Lagrangian reads 

(4.30) 

Here we have used the linear operators D,, with the property D n o ~ s l  = a # l / d & .  
We have further transformed the first term in (4.26) to an equivalent form (the 
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difference being terms of the form a( ) /a t  and 3,- ( )). The Hamiltonian density H is 

(4.31) 

which is the same as (4.13), where h and k,, are the generalized coordinate and its 
conjugate variable respectively. 

4.3. Interpretation and equations of motion 
The Hamiltonians (4.13) and (4.31) are very similar to the Hamiltonian for linear 
waves on a flat surface. The first term is the kinetic energy, which for linear waves 
on a flat surface is tq5, D, q5s. The actual term reflects the tilt of the surface by big 
waves. The surface integral of this term is equal to  the volume integral of +vf. (We 
assume no flow through the bottom or side boundaries.) This term in the integrand 
differs from the corresponding term in (3.22) by a factor yo, the change in the 
integration measure. The second term is a modified gravitational potential energy. 
In  the pure-gravity-wave case, the modification simply reflects the accleration of the 
surface fluid. With surface tension, a-g is not normal to the surface, and the 
effective gravity (4.14) contains a surface-tension contribution. In the pure-gravity- 
wave case, this term differs from the corresponding term in (3.22) by the same factor 
yo that the first term does. The surface-tension term is much simpler in surface 
coordinates than in horizontal coordinates, and is just the linear wave surface- 
tension energy tilted by the big wave. The last term is the advective term of the 
expected form Us.  P,, where Us is the large-wave fluid velocity parallel to the surface 
and P, is the small-wave momentum parallel to the surface. It is to be contrasted 
with the corresponding term in (3.22), uos- P2, involving horizontal velocity and 
momentum. These corresponding terms are not in a ratio of yo unless the big- 
wave flow is steady, This is because the value of the energy changes between 
the description in the two different coordinate systems for a time-dependent 
transformation. 

The surface-tension part of the perturbed Lagrangian is iu [(a, h)'- (K: + K;) h']. 
This is identical with the expression one would get for the perturbed potential energy 
of a surface film (e.g. soap film) perturbed from a form where the local principal 
curvatures are K ,  and K ~ .  Consider, the for example, a cylindrical film of radius R. An 
axial perturbation with a wavelength longer than the circumference 27cR gives a 
negative perturbed potential energy, and thus leads to instability. (It is well known 
that cylindrical surface films with lengths longer than the Circumference are 
unstable.) 

The linear equations of motion obtained by variation of (4.31) with respect to h 
and @sl, taking account of the time dependence of dS, are 

and 

(4.32) 

(4.33) 

5. The action 
In the two previous sections there was no assumption of scale separation in 

wavelength between the perturbed and the unperturbed motions. We now turn our 
attention to the case where the perturbation represents a short wave, i.e. its 
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wavelength is assumed short compared to a characteristic scale of the unperturbed 
motion. It is in this case where the action of the short wave is expected to be an 
adiabatic invariant. Calculations assuming scale separation are often much better 
than might be expected. For example Furry (1946) found, when the ‘large’ and 
‘small’ scales were essentially equal, that  the quantity that he was calculating was 
only wrong by 13%. Action conservation is also expected to work very well even 
when scales are not too disparate. For action conservation to work to some order, it 
is necessary that the energy be calculated properly to that order. Low-order 
oscillating parts of the simple action we calculate can be removed either analytically 
(Kruskal 1962) or by averaging in space and or in time. 

In  the first part of this section we derive the equations of motion for the action 
where the coordinate system is tied to the longer waves. In  the last part we derive 
the equations appropriate to a fixed, flat space coordinate system. 

Because the expression for the Hamiltonians in $3  or 4 are similar to the linear 
wave Hamiltonian, the action is the same as the linear action with possibly four 
changes. The first change is that g is replaced by either geff for the surface coordinate 
Hamiltonian or gapP for horizontal coordinates. Other changes for only the surface 
coordinate expressions are t’hat the amplitude a is measured normal to the surface 
(not vertically), and the wavenumber k is measured along the surface (not 
horizontally). The last change is that D,, is not equivalent to k .  except in lowest 
order. For completeness, we show these results. 

We assume the perturbation to look locally like a plane wave and to be represented 
by (in the surface coordinate system, with trivial changes in the horizontal 
coordinate system) 

$sl = C sinx, h = a eosx, 

where k = a,x, w = -- 
at 

are the local wave vector and frequency, respectively. C, a ,  o and k are assumed to 
be slowly varying functions of t and position on C. Using scale separation the 
relations between w ,  k ,  C and a can be found by either of two related procedures : (i) 
inserting (5.1) into (3 .22)  or (4.31) and using standard WKB techniques; or (ii) using 
Whitham’s method (see Whitham 1974a, b ) ,  i.e. by inserting (5.1) into (4.30) or the 
Lagrangian obtained from (3 .22) ,  finding the phase-averaged Lagrangian density E 
and varying with respect to a and C. This method carries over to nonlinear short 
waves. In  either case we find the relations 

and ( 5 . 2 )  

where d,, is the appropriate eigenvalue of the operator Dno. (The horizontal- 
coordinate-system relations differ from (5 .2)  only by geometrical factors.) 

5.1. Surface coordinates 
For surface coordinates, d,, has the form 

d,, = k + i ~ ~ + O  - , (5.3) 

where the curvature perpendicular to  k is 

K~ = K~ sin2 O1 + K~ cos2 O,, (5.4) 
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and 0, is the angle between k and the direction of the first principal curvature. In  
what follows, we approximate d,, by its first term k ;  more accurate expressions are 
easily constructed. The dispersion relation following from (5 .2)  is then 

(W - k -  U)' = geff k + v k 3 ,  (5.5) 

which, in the gravity-wave case, was given by Garrett & Smith (1976). 
Using ( 5 . 2 ) ,  the phase-averaged Lagrangian and Harniltonian densities read 

and 

The action density is now given by 

(5.7) 

where E = H .  Variation of the averaged Lagrangian L with respect to the phase x 
then gives (see Whitham 1974a) 

which by (5 .8)  is readily transformed to 

aA -+a+&) at = 0, 

(5.9) 

(5.10) 

giving the proper conservation equation for the action. Note that, with our definition 
of w in (5.5), the group velocity, 5 = aw/ak,  is tangent to the surface. 

The eikonal equations describing the motion (in three-dimensional space) of a 
wave packet of small, short waves are readily obtained. Denoting V,  as the large- 
wave velocity normal to the surface these equations are 

(5.11) 

(5.12) 

where it is understood that k = k(z( t ) ,  t )  and aslkw = [ V - f i ( f i . V ) ] 1 , ~  means that 
the spatial derivative is taken, keeping k ( x ( t ) , t )  fixed. The term V ,  in (5 .11)  ensures 
that the wave packet stays on the surface of the large wave. For a flat surface the 
right-hand side of (5.12) vanishes yielding the usual eikonal equation (following from 
the integrability condition for ( 5 . 1 ) ) .  Extra terms arise in the integrability condition 
on a curved surface because dldt and as are not gradients (i.e. they do not commute). 
The two extra terms present for a curved surface have a simple interpretation. The 
first ensures that the wave vector k remains tangent to the surface (i.e. ii - k = 0).  The 
second term is due to wave stretching. Our definition of the time derivative requires 
that 'positions' of the surface move only normal to the surface, which implies that 
the distance between points on a curved surface changes, i.e. the surface 'stretches'. 
The second term ensures that,  as the surface 'stretches ', the number of wavelengths 
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(of the small waves) between two points on the surface would not change in the 
absence of motion relative to the surface coordinates. This term is also necessary to 
guarantee the covariance of (5.11) and (5.12), as otherwise (5.12) would change under 
a transformation from one inertial reference frame to another. 

5.2. Horizontal coordinates 

For practical calculations the surface coordinate system is awkward to use. We 
therefore sketch the derivation of the ray equations for the flat space coordinate 
system. 

The dispersion relation requires evaluating the operator yo D,, on a sinusoidal 
function eik.x. We define d,,(x, k) by 

yo d,, = Re [e-ik'xy, I),, eik.x]. (5.13) 

On a flat horizontal surface it would have the value k .  We have evaluated the first 
two terms of yd,, in powers of l l k .  This is accomplished by using an exact solution 
of Laplace's equation 

f = Jd2q,eiqs"e*snG(q s ,  ) (5.14) 

where In G(q,) is an arbitrary quadratic function of qs. The vector t is the projection 
of the position r onto the plane tangent to the wave and n is the distance to the plane. 
The parameters of C are chosen to make 

lnf),,50 = ik.x+0(x3) as x+O. 

Then Yodno Re [yo a n  f l z = < o I .  (5.15) 

When this is evaluated, we find 

(5.16) 

(5.17) 

The quantity yo/p  is the ratio of the wavenumber to its projection onto the plane 
tangent to the surface. The correction term to  yo d,, involves the second derivative 
of <,, related to the curvature, in the direction perpendicular to k. 

The small-wavelike approximation for (3.25) and (3.26) follows from these 
equations by the replacements 

d,+-iw, (5.18) 

a, + ik, (5.19) 

(5.20) YO Dno + YO dno. 

They can be solved for w ,  giving 

w = [yo  dnO(gapp + ~ k 2 p 2 y ~ 3 ) ] ~ +  u,,. k. (5.21) 

The ray equations are the usual 
. ao x = -  

ak 

- aw k =  -- 
ax 

(5.22) 

(5.23) 
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The action has the same form as in (5.8)-(5.10), taking y,d,, = Ep, 

)a 
-+e,.(a&) dA = o  
at 

(5.24) 

(5.25) 

but the symbols b and E now refer to vertical height and horizontal wavenumber. 

6. Radiation reaction on the large waves 
In  the preceding sections, we have treated the large waves as comprising an exact 

solution of thc equations of motion without the small waves. We mentioned in the 
introduction that such an assumption is not required for the calculation that we did, 
but that the back reaction was allowed in the large waves, because it was of higher 
order in the small-wave amplitude than we included. Clearly, there is a certain 
amount of choice in the definition of the large waves. 

If one chooses the large wave to be an exact solution, the canonical transformation 
(2.23) eliminates the tcrm in the Hamiltonian linear in the small wave, but makes no 
other changes. Thus, not only the quadratic, but all higher terms are unchanged by 
that transformation. What should be the back reaction occurs in the cubic terms, and 
the small-wave variables evolve to include a contribution that would be better 
thought of as a radiation-reaction contribution to the large waves. 

If, on the other hand, the big waves are chosen to respond dynamically to the 
radiation pressure from the small waves, there is still a certain amount of ambiguity 
in the choice of the decomposition into large and small, Y = YL+ Ys, where Y 
represents the pair (6, $J. One particularly attractive resolution of the ambiguity is 
to choose 

The equations of motion are 

%&m( y, + Y S )  k &A,(YL - ul,)] = 0. 

The sum of these two equations is the original equation of motion and the difference 
is the dynamical equation for the decomposition. (Clearly, any choice for the function 
of YL- Us would also yield this property. Our particular choice is motivated by 
Whitham’s averaging technique. If Ys is to represent a single short wave, the average 
of L over the short-wave wavelength eliminates all terms odd in Ys.) In a Taylor- 
series expansion of Lold in powers of Ys, all odd terms are discarded to obtain the 
Lagrangian. The cubic term is not present, and the quadratic term, (3.22), thought 
of as a function of the large-wave variables, provides the correction to the 
unperturbed Hamiltonian which gives the radiation reaction. 

If one makes the short-wavelength approximation described in $5, the back 
reaction can be conveniently described in terms of the energy and the action of 
the small waves. Thc entire Hamiltonian must be expressed in a consistent repre- 
sentation. Since the large waves are best described in the horizontal coordinate 
system of 93, the small-wave energy and frequency are to be evaluated in this 
coordinate system. One treats the large-wave variables dynamically, rather than 
specified in advance as we have. One writes the Hamiltonian of the entire system 
as 
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and treats A as a constant. The back reaction is included in the equations of 
motion 

and - 

The variations of w with respect to the fields have delta functions a t  the 
positions of the small waves. That (6.3) can be interpreted as a Hamiltonian can be 
derived by the method of Whitham ( 1 9 7 4 ~ ) .  

7. Discussion 
We have derived the dynamics of small waves riding on larger waves using a 

canonical formulation. The straining and advection is caused by the large waves, 
which can be fully nonlinear. The small waves are treated linearly and their 
dynamics remains such in the presence of larger waves. The modifications due to the 
large waves are a tilting of the reference surface, a modified gravity, and an advective 
term. These results are similar to those of Longuet-Higgins. We have extended his 
calculations to include gravity-capillary waves and to allow for a more general large 
wave (instead of a single Stokes wave). This allows the application of our results to 
a realistic ocean surface. We also show that there is no ambiguity in the calculation 
of wave action. Our final result for the small-wave Hamiltonian can be expressed in 
two equivalent forms : in terms of horizontal coordinates (3.22) or in terms of surface 
coordinates (4.31). For the pure-gravity case, the action obtained from this latter 
expression is identical with that of Garrett & Smith and of Longuet-Higgins when 
the wave amplitude is interpreted as normal to the surface and the wavenumber is 
evaluated parallel to the surface. 

In the derivation of the appropriate short-wave equations of motion, we assumed 
that the larger waves were exact solutions to the original equations. However, our 
procedure is also appropriate for approximate solutions to these equations. That is, 
we pretend we have exact solutions until we obtain the quadratic Hamiltonian. 
Otherwise, perturbation terms appear which try to correct the approximate solution 
and are not related to the short-wave dynamics. Proper treatment of conserved 
quantities, such as wave action, shows that the large-wave solutions should be 
treated as exact. However, this is necessary only to first order in the short-wave 
amplitude and this is sufficient to calculate the reaction of the small waves back on 
the large waves. The back reaction of the small waves on the large waves is quadratic 
in the small wave amplitude, and therefore does not modify the small wave equation 
to the order we are following. Indeed, techniques exploiting scale separation are a 
very convenient way of calculating the back reaction of small, short waves on large, 
longer waves. 

In  summary, we have calculated the energy and action of small waves riding on 
large waves. This calculation has been done in a horizontal coordinate system in 
which the different terms in the energy are not obtained by transforming free waves 
to a different coordinate system. Any calculations or simulations of the behaviour of 
small waves on any but the simplest long wave (e.g. a Stokes wave) are most 
conveniently done in this coordinate system. In order to gain some intuition into the 
meaning of the energy terms and to compare to previous work, the Hamiltonian was 
transformed into the non-inertial frame moving with the surface of the long wave. 
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Because of mathematical complications, i t  is difficult to perform calculations using 
this non-inertial frame. On the other hand, the expressions in this frame are useful 
in showing that the consequence of the long wave is to give an effective gravity and 
to advect the small wave. On further assuming a scale separation, the averaged 
Lagrangian equation and action density were derived and action conservation was 
explicitly demonstrated. 

This work was supported by the Defense Advanced Research Projects Agency, and 
by La Jolla Institute internal research funds. 
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